Author Topic: MO/GRAND CANYON  (Read 593 times)

Admin

  • Administrator
  • Hero Member
  • *****
  • Posts: 555
    • View Profile
MO/GRAND CANYON
« on: February 28, 2017, 12:33:56 pm »
Analysis of Walt Brown’s Flood model
by Michael J. Oard
http://creation.com/hydroplate-theory
Published: 7 April 2013

Abstract

Of the variety of Flood models in existence, all need extensive work, which is actually a healthy state according to the principle of multiple working hypotheses when there are many unknowns. All of us must guard against holding Flood models too tightly. Dr Walter Brown’s Flood model is first summarized from chapter one of Part II of the eighth edition of his book: In the Beginning: Compelling Evidence for Creation and the Flood. Then the next 7 chapters of Part II, which amplify major aspects of his model, are summarized. In my general comments, I point out his questionable initial conditions, lack of in-depth analysis, the arbitrary fitting of data to his model, questionable references and analogies, the dubious significance of his predictions, and problematic comparison tables.

After adding brief comments on his model, I provide more specific comments in the areas that I know best: (1) the origin of Grand Canyon and (2) the life and death of the woolly mammoths in Siberia, Alaska, and the Yukon Territory. In regard to the origin of Grand Canyon, I emphasize the lack of block faulting of the Grand Staircase and the Roan and Book Cliffs of the Colorado Plateau; the lack of enough water to erode 300 m (1,000 ft) of strata over the whole Grand Canyon area and then carve Grand Canyon; that the lakes did not breach at the low points across the Kaibab Plateau; the lack of evidence for the existence of the lakes because there are no shorelines, raised deltas, or bottom sediments; and the inability of the dam-breach hypothesis to explain long, deep, narrow tributary canyons. Two of the numerous problems with the woolly mammoth data in high northern latitudes are the evidence the mammoths died at the end of the post-Flood Ice Age and not at the beginning of the Flood, and evidence against the quick freeze hypothesis. Since Brown compares my model for the woolly mammoth data with his, it gives me a chance to show how artificial these comparison tables are.
Introduction

Models attempt to be a representation of reality. Historical science is filled with models dealing with some aspect of the past. These models can include past climate models attempting to estimate future global warming, groundwater flow models, plate tectonics models, solar system formation models, etc. Models vary in sophistication from numerical computer models to simple deductions based on a set of observations.

In this web article, I will analyze Dr. Walt Brown’s hydroplate model. I will first summarize the model from Part II of his book, and focus on the areas of study most familiar to me: the origin of Grand Canyon and the life and death of the woolly mammoths in Siberia, Alaska, and the Yukon. I will give only brief comments on other aspects of his model with which I am less familiar.
Creationist flood models

Creationists have several Flood models, which vary in their degree of sophistication, and how much they explain of the pre-Flood, Flood, and post-Flood periods of biblical earth history. These models vary considerably in their mechanisms for the Flood and the locations for the Flood/post-Flood boundary and the pre-Flood/Flood boundary. The most sophisticated model is the Catastrophic Plate Tectonics (CPT) model, which uses a comprehensive computer program that attempts to simulate runaway subduction and rapid horizontal plate movements over thousands of kilometres.1 Probably the most comprehensive Flood model is Walt Brown’s Hydroplate Theory (HPT) because it purports to explain numerous events and observations of the earth and solar system.2

Flood modelers need to know which rocks and fossils are from the Flood. Therefore the location of the pre-Flood/Flood and Flood/post-Flood boundary is important to any model, as these locations determine geological activity before, during, and after the Flood. So, models that place the Flood/post-Flood boundary in the Precambrian or Palaeozoic attempt to place most of the sedimentary rocks and fossils after the Flood.3 An excellent resource for examining the state of Flood models is the recently completed ebook on models, called the Flood Science Review.4 The general conclusion of this review is that all extant models need much work.

By way of aside and declaring my own bias in this, I would have loved to work on and support one of the existing models, like CPT or HPT, and work exclusively on Ice Age and Flood challenges. However, in examining Flood models, I have come across numerous problems with those models, which need addressing and research by advocates of those models. So, as a result of my frustration with these other models, I have begun working on a comprehensive Flood model that is in the building stage, called the impact/vertical tectonics (IVT) model, which I believe has great potential.5
There are so many unknowns and we all see through a glass dimly (1 Corinthians 13:12a) when it comes to interpreting the past.
Principle of multiple working hypotheses

Many Christians are confused on why there are different Flood models. There are also different creationist cosmological models. The reason is that there are so many unknowns and we all see through a glass dimly (1 Corinthians 13:12a) when it comes to interpreting the past. Actually it is a healthy tendency when there are varying models as long as they pass peer review (unlike Dr Brown’s model). All the unknowns within earth science in general can be shown just by the huge volume of research published every year attempting to fill in the many blanks. Reading some of these research papers, one easily discovers how much remains to be discovered. Science is very specialized, so that any one specialist knows little about other specialties. And even in one particular specialty within a subfield of a field of earth science, no one researcher knows all or even a majority of the available data. The problem is extreme in the historical aspects of earth science, as these depend upon one’s worldview with no observations of the events that laid down the rocks and fossils.

The geologist T.C. Chamberlin wrote a provocative but sobering essay in 1897 in The Journal of Geology, which was reprinted as an historical essay in 1995.6 In it, he suggests that having multiple working hypotheses in the face of many unknowns is healthy for science. Ideally with time, hypotheses are revised or rejected. It is especially dangerous for there to be a ‘ruling hypothesis’, which stifles research and causes researchers to attempt to pigeon-hole observations within the one model or paradigm. It retards science and causes the original researcher to be too attached to the model. Chamberlin colorfully discusses this problem:
We must guard against this tendency to hold our models dear to us.

    “The moment one has offered an original explanation for a phenomenon, which seems satisfactory, that moment affection for his intellectual child springs into existence, and as the explanation grows into a definite theory his parental affections cluster about his offspring and it grows more and more dear to him. … There springs up also unwittingly a pressing of the theory to make it fit the facts and a pressing of the facts to make them fit the theory. … The theory then rapidly rises to a position of control in the processes of the mind, [sic] and observation, induction and interpretation are guided by it. From an unduly favored child it readily grows to be a master and leads its author whithersoever it will.”7

We must guard against this tendency to hold our models dear to us. Models are supposed to be held lightly, since they are difficult to validate or verify.8 One unaccounted-for variable in a model (especially with historical models) can result in a completely different solution.

... General comments

Brown’s hydroplate model purports to explain an enormous number of observations and past events. It seems fantastic that one model with one assumption and the laws of physics can explain so much. But there is an old saying that “if it’s too good to be true, it probably is.” I find much of Brown’s model and many of his explanations of phenomena lacking detailed evidence. Sometimes aspects of his model are unclear or incomplete, leading to difficulty understanding some of it. For instance, I was unsure of whether the muddy hail that fell from space froze only the woolly mammoths and other animals that are now found at high latitudes.
The initial condition

One of the first problems is his initial configuration of the pre-Flood Earth and the condition of his subterranean chamber increasing in temperature and pressure with time due to tidal pumping. This is a very special, arbitrary initial condition that has no evidence, as far as I know. It also raises the question of whether God would have created a world that He called ‘very good’ which already had a ‘ticking time bomb’ which, in time, will explode. It also seems to me that he does not have only one assumption in his model, as claimed, but seems to make further assumptions continually in order to make his model fit the observations of rocks, fossils, and the solar system.
Lack of in-depth analysis

Brown’s book has much good information and brings up many conundrums of earth science. These include the fact that the fit of the continents across the Atlantic Ocean is not as good as most people believe. In the famous Bullard fit, Africa had to be shrunk 35%; Central America, southern Mexico, and the Caribbean Islands had to be removed; the Mediterranean Sea was reduced in size; Europe was rotated counterclockwise; Africa rotated clockwise; and North America and South America were rotated relative to each other.14
Dr. Brown does not analyze many phenomena in depth and gives a broad brush analysis without connecting details of his mechanism with the phenomena to be explained.

Although he has seven chapters amplifying aspects of his Flood model, Brown does not analyze many phenomena in depth. Instead he gives a broad brush analysis without connecting details of his mechanism with the phenomena to be explained. Examples will be given in the section on specific comments. He also does not subject the steps in his model to peer review and publication in the creationist technical literature, although he did publish a broad brush of his model at the International Conference on Creationism15 and in the Creation Research Society Quarterly.16 Each step in his model should have been justified by peer review and publication.

For instance, he points out that some atolls in the central Pacific, such as Eniwetok Atoll, have a thick carbonate cap, but because of insufficient analysis does not realize that many of the surrounding guyots, which he calls tablemounts, in the region of atolls also have a thick carbonate cap: “The depths of tablemounts below sea level increased rapidly; otherwise most would have coral growths rising near sea level.”17 He also thinks that the carbonate cap on Eniwetok (and presumably other atolls) is a reef, composed of corals almost a mile deep: “Eniwetok Atoll, composed of corals, lies in the tablemount region and rests on a tablemount.”16 There is much evidence that the carbonate on Eniwetok and other atolls is not from a reef,18 showing Brown’s incomplete analysis of reefs.
Fitting his model to the data

He often seems to make his model fit the data. For instance, he says that the basaltic, pre-Flood lower crust was eroded by strong horizontal currents in the subterranean chamber, adding 35% of the particles to the Flood sediments with the other 65% of the particles coming from the crushed granite. This just happens to match estimates made of the particles in sedimentary rocks by Mead in 1914 and Twenhofel in 1961.
Questionable references

Brown seems to rely on legends and myths too much, for instance a Hopi Indian legend claiming that the mid-ocean ridge in the Pacific was once above sea level,19 which supports his idea that sea level was at least 4.6 km (2.9 mi) lower than today after the Flood. To support his idea of an Earth roll, he sometimes uses questionable sources, such as Charles Berlitz, who wrote on tribal mythology, physic studies, ancient astronauts, and archeology, but is most well known for perpetrating the massive Roswell aliens hoax in his coauthored book, The Roswell Incident.20
Questionable analogies

I find that he uses analogies a lot, but some give the wrong impression because they do not compare well with the phenomenon to be explained, for instance in the following:

As the continental plates met resistance, they crashed (or quickly decelerated), crushed, and thickened, similar to a thick sheet of snow sliding down a mountainside in an avalanche.”16

Thickening snow as an avalanche comes to a stop is an easily understood phenomenon, but the analogy makes one think that granite can easily pile up upon deceleration of hydroplates. So, the analogy does not apply except in a superficial sense. The question really is, “What should we expect if granite hydroplates came to an abrupt halt?” and “Is there evidence for this?” which should be abundant. Finding isolated chevron folds in the Rocky Mountains21 or dikes in Black Canyon and the inner gorge of Grand Canyon22 are not significant evidence for the halting of granite hydroplates.

Brown also uses the analogy of a buckling upward spring as an analogy of the Mid-Atlantic Ridge buckling up nearly 16 km (10 mi).23 But the analogy only applies in the most superficial sense. The analogy is misleading in that one gets the impression that the buckling upward of the MAR is quite easy.
Predictions

Brown makes a number of predictions for his model, which are summarized in Part III in Frequently Asked Questions.24 Some are bold, like a prediction should be, such as prediction 6: “A 10-mile-thick granite layer (a hydroplate) will be found a few miles under the Pacific floor and inside the ring of fire and others.”25 Other predictions seem insignificant, such as prediction 10:

    “Corings taken anywhere in the bottom of any large lake will not show laminations as thin, parallel, and extensive as the varves of the 42,000-square-mile Green River Formation, perhaps the world’s best known varve region.”26

The Green River ‘varves’ are especially thin and widespread, very likely formed during the Flood12, while post-Flood lake rhythmites (not necessarily varves that are defined as rhythmites with couplets of one-year duration) are not expected to be the same because of the different mechanism and environments of formation.

He claims to have confirmed four out of 39 predictions: (1) pooled water under mountains, (2) hidden canyon under the Bosporus, (3) salt on Mars, and (4) carbon-14 in ‘old’ bones. I am uncertain how significant these ‘hits’ are, but from a creationist point of view we would predict carbon-14 in a lot of ‘old’ material.
Questionable comparison tables

I found his comparison tables artificial in that he compares his model to poor or old uniformitarian and catastrophic hypotheses. Since my ideas on the life and death of the woolly mammoths in Siberia, Alaska, and the Yukon Territory of Canada were compared in his chapter on woolly mammoths, I will have more to say about comparison tables in the section on the woolly mammoths.
Specific comments

I will give only a few specific comments on Brown’s model outlined above, and delve deeper into the subjects I know best, which are: (1) the origin of Grand Canyon, and (2) the life and death of the woolly mammoth. His two chapters on this subject are examples of what can be said about his other chapters after an in-depth analysis of other aspects of Brown’s model and the phenomena that he purports to explain.
The HPT mechanism

Probably a whole book could be written on every aspect of the HPT mechanism. Much more details are needed to fill in the many gaps. For instance, would a quantitative analysis of pre-Flood tidal pumping heat the subterranean water chamber enough to cause it to burst? And why would it burst in a linear fashion along the MORs and not through one or several openings through the upper granite crust, as one would expect: It seems that if one heats a bottle full of water, the bottle will burst at one locality.

I especially question that there would have been sufficient force for the jets of water to do what they are claimed to have done. Namely, to break through the MOR, jet through the atmosphere, and shoot water and rocks into outer space to form meteoroids, asteroids, and comets, plus put these solar system bodies into precise orbits. The mechanisms of ‘fluttering’ and ‘water hammers’ seem much too weak to overcome the Earth’s gravity. A lot of quantitative calculations are required to show the sufficiency of the ‘rupture phase’.

Creationist astronomer Danny Faulkner has done several back-of-the-envelope calculations in examining Brown’s ideas on comets and asteroids. He finds numerous problems. For instance, passing enough water and solids up through the atmosphere at Mach 150 is not possible.27 Furthermore, he shows that long-period comets do not have enough time since the Flood to return close to the Earth in order to be detected, so we should not have seen any long-period comets yet. Faulkner also questions Brown’s claim that the composition of comets means they had to have come from the Earth. He finds errors in many other of Brown’s assertions in regard to astronomical data, and concludes that the hydroplate model cannot explain the origin of comets and asteroids.

The mechanism to produce the Flood sediments starts with the crushing of the rock around the MORs and the erosion of the basaltic lower crust below the water chamber. Then the sediments in just the right proportions of 35% basalt and 65% granite are spread over the hydroplates by water. But the hydroplates are shallow compared to the Pacific Ocean that is buckling downward. One wonders whether the sediments would end up in the Pacific Ocean, especially considering the relative high velocity of the hydroplates. More details of sedimentation would be nice.

His mechanisms for the formation of salt and carbonates are similarly too good to be true. Why should carbonates and salt act differently, as he describes? How does gypsum, a major precipitate often found with salt layers, fit into his model? The thick and widespread salt deposits in the Gulf of Mexico and adjacent coastal areas are much more than 640 km (400 mi) from the Mid-Atlantic Ridge. So, the salt in the subterranean water chamber would not be exposed for sediments to pile on top of, unless the deposits formed after the continental drift phase. Chalk has been demonstrated to be organic, made up of coccoliths, a marine microfossil.

The whole idea of liquefaction to sort sediments and fossils must be demonstrated to be workable on any scale other than very local. How could such liquefaction sort on a worldwide scale? It seems that liquefaction would tend to mix sediments instead of separating different types of sediments such as carbonates, muds, sand, silt, clay, etc., as well as the types of fossils seen in the geological column. There are also no details of how liquefaction can produce the phenomena that it purports to explain.

The continental drift phase needs much filling in of detail. Is the removal of 10 miles (16 km) of granite at the MORs sufficient to cause the basalt lower crust to rise up almost that distance? And given the tremendous horizontal distances, would the granite upper crust slide away from the Mid-Atlantic Ridge to where we see the continents today? Then there is the issue of what happened at other MORs; it seems that the same rise should have happened on the East Pacific Rise, the ridges in the Indian Ocean, and others, which would mess with the formation of trenches that are mostly around the Pacific Ocean. Then how could such buckling upward of the Mid-Atlantic Ridge cause a sucking in of the Pacific plate forming trenches and the ring of fire on the edges? Much more evidence is demanded on how the Earth’s outer core could liquefy, and that magnetite could sink and align in the solid inner core to form the magnetic field and change the length of the day. (The Earth’s magnetic field and its decay are understood quite well as the result of a circulating current in the liquid outer core).

The evidence for the compression event is minuscule in the form of isolated chevron folds and dikes in the Rocky Mountains, while such features should be widespread. The rise of the mountains to perhaps twice their current height needs to be demonstrated, and most especially that such a rise can cause a roll of the planet of up to 45°. Quantitative details are absent. He attempts to explain warm climate fossils in high northern latitudes, but what about the warm climate vegetation, coal, and dinosaur fossils on Antarctica?

His ideas on the formation of radioactive elements equally suffer from a lack of quantitative evidence. Furthermore, Brown’s mechanism of fluttering or waving of upper granite crust and water hammers seems orders of magnitude insufficient to cause radioactive elements.
Is Brown’s version of the dam-breach hypothesis for Grand Canyon viable?

Brown’s motivation for postulating his dam-breach hypothesis is mainly because he sees the Flood as inadequate for the job of carving Grand Canyon. He believes that if the Flood drained from all over the earth, there should be hundreds of other Grand Canyons,28 and the Flood water could not rise 1,830 m (6,000 ft) to flood the Colorado Plateau.29 I am sure he feels that the Flood is inadequate to explain many other geological features. It is dangerous to conclude that the Flood could not produce a particular feature carved by water in the past, especially since we have extremely few facts in geology and paleontology to work with and we are not nearly smart enough to put the known facts together. It takes great long-term, in-depth analysis to produce a hypothesis for the Flood origin of any feature, and even then we are rarely privy to all the information in order to make an informed decision.

I do not think Brown has thought through his Flood objections very well. The depth of an erosional canyon during channelized Flood runoff will depend upon many variables, including the amount of water being channelized, the velocity of flow, the type of rock eroded, the intensity of the uplift of the land, and the amount of sinking of the continental margin. In the case of Grand Canyon in a model of Flood runoff, flow converged at the location of eastern Grand Canyon from drainage of the entire Colorado Plateau.30 With the strong rise of the Colorado Plateau and the sinking of the continental margin off California, a deep canyon would be expected. Brown should have worked out the details of his assertion and published it in the creationist technical literature. Besides, there are many other deep canyons across the earth, such as Copper Canyon in the Sierra Madre Occidental Mountains of northwest Mexico, which is deeper than Grand Canyon and only 965 km (600 mi) south.31,32

As far as the impossibility of the Flood water covering the Colorado Plateau, Psalm 104:6–9 indicates that the land rose up out of the Flood water.33 This is similar to the canard that the Flood water could not cover Mount Everest. However, the Himalayas and all the mountains of the world rose up out of the Flood water.34 In fact after deposition, of the thick sediments on the Colorado Plateau, an average of 2,500 to 5,000 m (8,500 to 16,500 ft) of sediments and sedimentary rocks was eroded, based on eroded anticlines.12,35 How would this happen after the Flood?

Brown’s dam-breach hypothesis has numerous problems, as do all dam-breach hypotheses.36 One major problem is he needs to erode around 3,000 m (10,000 ft) of strata from the whole Grand Canyon area because that is the approximate amount that once lay over the area based on the dipping strata of the Grand Staircase (figure 4). Such erosion occurred in the late Cenozoic because of the Marysvale Volcanics on top of the fifth stair that once extended far south and dated as late as early Miocene.37

In regard to the Grand Staircase, as well as the Roan and Book Cliffs, Brown states that these are east-west faulted escarpments and so he does not need to erode 3,000 m (10,000 ft) of strata but only 300 m (1,000 ft) over an area of 25,500 km2 (10,000 mi2). Brown stated:

    “Large blocks, when lifted, became cliffs and block-faulted mountains. North of the Grand Canyon are many examples: Utah’s Book Cliffs, Roan Cliffs, the Grand Staircase (Vermillion Cliffs, White Cliffs, Grey Cliffs, Pink cliffs), and many others.”38

However, these cliffs are obviously erosional escarpments, especially seen at contacts between strata in north-south valleys that penetrate the ‘stairs.’ They are not fault scarps. The major faults in the region are orientated north-south.
Not enough water for erosion

Let us for sake of discussion assume that he needs to erode only 300 m (1,000 ft) of soft strata. One problem is that this soft strata had a hard cap of rock on top, as shown by three erosional remnants in the Grand Canyon area: Red Butte (figure 6), Cedar Mountain, and Shinumo Altar. Regardless, the total volume of rock eroded by sheet flow would be 8,500 km3 (2,000 mi3). The volume of Brown’s two lakes east of Grand Canyon was only about 12,000 km3 (2,930 mi3). That is a little more than a cubic km of water to erode a cubic km of sediment, which seems like too little water, just to erode the 300 m (1,000 ft) of sediments before Grand Canyon was even carved!

Furthermore, all the water would have to be available all at once. When a lake breaks through hard rock, it slowly lowers the outlet, such as happened during the Bonneville flood, when pluvial Lake Bonneville overtopped Red Rock Pass in extreme southeast Idaho. It is estimated that about 100 m (330 ft) of rock was eroded in about 8 weeks before the flood ended. Although a uniformitarian estimate, I believe it because the flood landforms in the Snake River Valley of southern Idaho are quite small, especially compared to huge flood landforms in eastern Washington caused by the Lake Missoula flood. In the latter flood, a large percentage of the 2,200 km3 (540 mi3) of water in glacial Lake Missoula was available all at once because of the breaking of the ice dam. In fact, that much water only eroded about 200 km3 (50 mi3) of soft silt and hard basalt along the flood path. That is about a 10 to 1 ratio of water to erosion with water velocities locally around 96 km/h (60 mph), which again shows that the volumes of Brown’s Grand and Hope Lakes are much too low to erode so much rock over northern Arizona, before about 3,500 km3 (800 mi3) of rock was eroded to form Grand Canyon. If Brown is hoping to add a substantial amount of released ground water, see the discussion below on ground water supposedly carving tributary canyons and other features of the southwest Colorado Plateau.
The lakes did not breach at the low points

Lakes breach at low points along their edge, such as what happened during the Bonneville flood. In all the versions of the dam-breach hypothesis, the breaching that carved Grand Canyon breached the south-sloping Kaibab Plateau at about 2,500 m (8,000 ft) on the North Rim and 2,200 m (7,000 ft) on the South Rim. However, the lowest points of the Kaibab Plateau are about 1,750 m (5,750 ft) on the northern end and 1,920 m (6,300 ft) on the south end of the Kaibab Plateau. Why didn’t the lake breach occur at these low points?
Figure 8. The narrow valley of the Little Colorado River Valley at a scenic overlook at milepost 285.7 on highway 64. The canyon at this point is a slot-like canyon about 365 m (1200 ft) deep.

Figure 8. The narrow valley of the Little Colorado River Valley at a scenic overlook at milepost 285.7 on highway 64. The canyon at this point is a slot-like canyon about 365 m (1200 ft) deep.

Austin has suggested that piping, water flow through cracks or tunnels in the rock, caused the initial breach through solid rock.38 However, the Redwall Limestone, which has a few caves, would have been many hundreds of meters below the bottom or edges of the lakes and the piping would have to extend over 160 km (100 mi) to the west.
Fatal problem no. 1: no evidence for the lakes

There are numerous other problems with any dam-breach hypothesis, but two really stand out and seem fatal to the hypothesis.35 The first is the lack of evidence for the two lakes. There are no lake bottom sediments, no shorelines, and no raised deltas where streams would have entered the lakes, while pluvial lakes of the nearby Great Basin and the ephemeral glacial Lake Missoula have abundant bottom sediments, shorelines, and raised deltas.

Sedimentation of lakes occurs along stream or river deltas and along the bottom by the sinking of fine particles, as well as downslope flow of turbidity currents and debris flows. The sediments are relatively soft around the putative lakes east of Grand Canyon, so there should have been thick sediments on the bottom of the lakes, but there are none. The Bidahochi Formation has been considered by a few creationists to be bottom sediments of ‘Lake Hopi’,39 but these sediments and sedimentary rocks are practically all volcanic or laid down by moving water.40,41 Besides, the Bidahochi Formation is currently near the top of, and even above, the lake surface of ‘Lake Hopi’. Any thick bottom sediments could not have been scoured out during the dam breach because the outlet of ‘Lake Hopi’ is a narrow slot canyon (figure 8) and so could not pass enough water fast enough to cause significant bottom-eroding currents in the greater part of the large ‘Lake Hopi’ (figure 9).

Brown has suggested reasons why there should be no shorelines,42 but these do not stand up to scrutiny.35 He first stated that after the Flood, the Colorado Plateau rose more than 1.6 km (1 mi), while the Rocky Mountains sank. Such uplift of the Colorado Plateau altered the shapes of the basins and caused the shorelines to shift. This shifting caused the water level also to shift so that it would not be at any one location long enough to etch a shoreline. Pluvial Lake Bonneville was just west of the proposed lakes and has abundant large shorelines. So, why wouldn’t Lake Bonneville also be affected by such great vertical uplift? Besides being a very unlikely scenario, such tectonic instability would not have been conducive to lake formation nor for long-term maintenance—the lakes should have lost their water much earlier than the dam-breach hypothesis predicts.
Figure 9. Schematic of theoretical currents in ‘Lake Hopi’ and the Little Colorado River Canyon. The current would have been strong through the Little Colorado River Canyon because of its slot-like shape but much weaker away from the entrance to the drainage point. Thick arrows show high velocity, and thin arrows show relatively low current velocities (drawn by Peter Klevberg).

Figure 9. Schematic of theoretical currents in ‘Lake Hopi’ and the Little Colorado River Canyon. The current would have been strong through the Little Colorado River Canyon because of its slot-like shape but much weaker away from the entrance to the drainage point. Thick arrows show high velocity, and thin arrows show relatively low current velocities (drawn by Peter Klevberg).

Brown suggested that oscillations in the lake waters would further erode any shoreline features, but these same movements would have caused the lakes to overflow their natural rock barriers, or render them mechanically unstable. Also, there is no field evidence of such dramatic crustal motions or of such lake oscillations at nearby pluvial Lake Bonneville to the west, which should have been affected by such tectonic instability, being so close to the lakes on the Colorado Plateau. Furthermore, Brown admits that the volume of Grand and Hopi Lakes would have increased rapidly after the Flood, which means that the lakes would have been even more unstable and very likely to have sloshed over their lowest rim and breached too early.

Brown secondly suggested that Lakes Bonneville and Missoula probably breached centuries after Grand and Hopi Lakes. Therefore, thunderstorms would have more time to erode the shorelines of the latter lakes. However, this deduction suffers from incomplete analysis. Grand and Hopi Lakes likely lasted 200 to 500 years. On the other hand, glacial Lake Missoula probably broke about 500 years after the Flood, after filling for about 80 years with each year’s stillstand forming a shoreline.43 It must have taken less than a year to etch each shoreline of glacial Lake Missoula, all the lower shorelines were then protected under the water and were able to be preserved.

Pluvial Lake Bonneville rose throughout this time and broke through Red Rock Pass a little before the Lake Missoula flood44, since the deposits of the Bonneville flood are below those of the Lake Missoula flood around Lewiston, Idaho. Lake Bonneville dropped over 100 m (330 ft) during the Bonneville flood. The highest and second highest shorelines are very distinct. So, the highest shoreline of Lake Bonneville must have been made within 500 years of the Genesis Flood, and since the lake was rising to that level in that time, the shoreline was made in much less time. It does not take long to make a shoreline, which means that shorelines should be abundant at many levels of the former basins of ‘Grand and Hopi Lakes’.

Although Brown cited erosion of shorelines by frequent summer thunderstorms, he cannot explain why that erosion is not observed affecting other preserved features across the Western United States, such as the abundant shorelines associated with the pluvial lakes. Moreover, shorelines cut into slopes would be more protected from the worst erosion, which comes from water accumulating in lower areas and flooding down gradient. Moreover, climatic conditions in Montana are just as, if not more, conducive to erosion by heavy snow runoff and summer thunderstorms, yet the remnants of glacial Lake Missoula are still plainly there.

Brown also appealed to elevated groundwater flow after the lakes emptied to destroy the shorelines. He believes that powerful springs would be so pressurized that shorelines would not only be destroyed, but cliffs formed from groundwater shooting high into the air. Such a scenario seems impossible, or at the least impossible to substantiate. But the shorelines of Grand and Hopi Lakes, if they existed, would often be found at high altitudes once the lake emptied. The shorelines probably would also be well above the water table. This would make it tough for groundwater discharge, as proposed by Brown, to reach such altitudes. Therefore, shorelines at higher altitudes should be preserved.

Brown did not utilize this argument, but it is possible to claim that shorelines would more easily erode on the Colorado Plateau because the sedimentary rocks are less consolidated. The problem with this is that glacial Lake Missoula’s shorelines are preserved on both hard and soft rock.45 Furthermore, many of the rocks beneath the proposed lakes on the Colorado Plateau are consolidated; certainly hard enough to preserve shorelines from minimal erosion over 4,000 years.
Fatal problem no. 2: long tributary canyons
Figure 10. Four long tributary canyons of the Colorado River through Grand Canyon that gradually descend to the level of the Colorado River (drawn by Peter Klevberg).

Figure 10. Four long tributary canyons of the Colorado River through Grand Canyon that gradually descend to the level of the Colorado River (drawn by Peter Klevberg).

There are three long tributary canyons that start far from Grand Canyon and descend down to the level of Grand Canyon (figure 10). These are Kanab canyon, about 80 km (50 mi) long, Havasu Canyon, about 97 km (60 mi) long, and Peach Springs Canyon, about 32 km (20 mi) long. The canyon of the Little Colorado River does not count in this analysis since it is proposed to have been carved by the breaching of ‘Lake Hopi’. The first two enter the Grand Canyon in 1.6 km (1 mi) deep slot canyons.

These canyons, not fault related, had to form at the same time as Grand Canyon so water from the dam-breach had to start in the headwaters of those canyons, suggesting that the waters of the dam-breach were at least 180 km (110 mi) wide. Brown’s version of the dam-breach hypotheses possibly could account for Kanab Canyon after the supposed sheet erosion of the 300 meters (1,000 ft) of strata over northwest Arizona. However, it would have been extremely difficult to erode Havasu and Peach Springs Canyon which enter Grand Canyon from the south.

Brown attempts to explain the erosion of these tributary canyons, plus add more water to erode Grand Canyon, by the catastrophic flow of a huge amount of ground water trapped within the sediments after the Flood. The problem with this ad hoc idea is that ground water cannot rush out of the sediments fast enough to cause significant surface flow and erosion. Furthermore, the sediments were consolidated and so water would move slowly through the pores of mainly the sandstones and possibly through caves in the limestone. The evidence for consolidation of the sediments at the time of the dam breach is the sides of Grand Canyon and side canyons, which would have slumped or bowed into the canyon if unconsolidated. The vertical walls of all the canyons provide direct evidence that the rocks were consolidated when Grand Canyon and its tributaries formed.
There are numerous problems with the dam-breach hypotheses for the origin of Grand Canyon … Two of these problems, the lack of evidence for lakes and the existence of long, deep tributary canyons, seem fatal to the hypothesis.
Discussion

There are numerous problems with the dam-breach hypotheses for the origin of Grand Canyon, as listed in Table 1. Two of these problems, the lack of evidence for lakes and the existence of long, deep tributary canyons, seem fatal to the hypothesis. There are many more specific problems that can be brought forth against Brown’s version of the dam-breach hypothesis, but the above are enough to show that his hypothesis won’t work.

A much better hypothesis for the origin of Grand Canyon is late Flood channelized erosion. The Grand Canyon is essentially a long water gap and so must be explained within the field of geomorphology in regard to the origin of water gaps.31 There are thousands of water gaps across the earth, 1,700 in the Appalachian Mountains of the eastern United States alone. These water gaps can easily be explained by channelized runoff of the Flood water flowing perpendicular to a barrier and channelizing.32 The 3,000 m thick layers of sedimentary rock removed from the Grand Canyon area, called the Great Denudation by uniformitarian geologists, can be explained by wide currents flowing from west to east early in the Recessive Stage of the Flood (the direction of flow shown by paleocurrent directional indicates in the lag Rim Gravel).46 Then the southern Rocky Mountains uplifted and the Flood current turned 180° toward the west and channelized in what uniformitarian geologists call the Great Erosion. This is when Grand Canyon formed.29
No evidence for the lakes (no shorelines, raised deltas, or bottom sediments)
Long, deep, narrow tributary canyons (Kanab and Havasu Canyons)
Rapid rise of lake water after the Flood would have caused a dam breach at the low points
Piping unlikely
A simultaneous release of most of the water required
Not enough water for sheet erosion or channelized erosion
Large crustal uplift and block faulting not supported by field evidence
Lack of flood features, such as bars and slackwater rhythmites, as seen with Lake Missoula flood
Lack of a massive gravel bar at the mouth of Grand Canyon

Table 1. Summary of evidences against the dam-breach hypothesis for the origin of Grand Canyon, the first two of which are judged to be fatal to the hypothesis.

-----

References

    Wise, K.P., Austin, S., Baumgardner, J., Humphreys, D.R., Snelling, A., and Vardiman, L., Catastrophic plate tectonics: a global Flood model of earth history; in: Walsh, R.E. (Ed.), Proceedings of the Third International Conference on Creationism, technical symposium sessions, Creation Science Fellowship, Pittsburgh, PA, pp. 609–621, 1994. Return to text.
    Brown, W., In the Beginning: Compelling Evidence for Creation and the Flood, eighth edition, Center for Scientific Creation, Phoenix, AZ, 2008. Return to text.
    Tyler, D.J., Recolonization and the Mabbul; in: Reed, J.K. and Oard, M.J. (Eds.), The Geological Column: Perspectives within Diluvial Geology, Creation Research Society Books, Chino Valley, AZ, pp. 73–88, 2006. Return to text.
    Bardwell, J., The Flood Science Review, injesusnameproductions.org/pages/page.asp?page_id=50291. Return to text.
    Oard, M.J., An impact Flood submodel—dealing with issues, J. Creation 26(2):73–81, 2012. Return to text.
    Chamberlin, T.C., The method of multiple working hypotheses, The Journal of Geology 103:349–354, 1995. Return to text.
    Chamberlin, Ref. 6 , p. 351. Return to text.
    Oreskes, N., Shrader-Frechette, K., and Belitz, K., Verification, validation, and confirmation of numerical models in the earth sciences, Science 263:641–646, 1994. Return to text.
    creationscience.com. Return to text.
    Moho is shorthand for the Mohorovičić discontinuity, which is the boundary between the Earth’s crust and the mantle. Return to text.
    Brown, Ref. 2, p. 150. Return to text.
    Here I think Brown’s model is superior to Austin’s model of Grand Canyon, since Austin’s third Lake, ‘Vernal Lake’ in northeast Utah, was not a post-Flood Lake, as the evidence is overwhelming that the sediments of the putative lake, the Green River Formation were deposited during the Flood—see Oard, M. J. and Klevberg, The Green River Formation very likely did not form in a postdiluvial lake. Answers Research Journal 1:99–108, 2008. Return to text.
    The effect of the temperature of a surface resulting from solar radiation on one side and a lack of solar radiation on the other side on the pressure exerted on it in a near vacuum, caused by the effect on the momentum transferred to gas molecules colliding with the surface. Return to text.
    Brown, Ref. 2, p. 114. Return to text.
    Brown, W.T., The fountains of the great deep; in: The Proceedings of the First International Conference on Creationism, Basic and Educational Sessions, Creation Science Fellowship, Pittsburgh, PA, pp. 23–38, 1986. Return to text.
    Brown, W., What triggered the Flood? Creation Research Society Quarterly 40(2):65–71, 2003. Return to text.
    Brown, Ref. 2, p. 153. Return to text.
    Whitmore, J.J., Modern and ancient Reefs; in: Oard, M.J. and Reed, JK. (Eds.), Rock Solid Answers: The biblical Truth Behind 14 Geological Questions, Master Books, Green Forest, AR, pp. 149–166, 2009. Return to text.
    Brown, Ref. 2, pp. 153, 359. Return to text.
    Brown, Ref. 2, p. 129. Return to text.
    Brown, Ref. 2, p. 112. Return to text.
    Brown, Ref. 2, pp. 126–127. Return to text.
    Brown, Ref. 2, p. 123. Return to text.
    Brown, Ref. 2, p. 332. Return to text.
    Brown, Ref. 2, p. 155. Return to text.
    Brown, Ref. 2, p. 174. Return to text.
    Faulkner, D.R., An analysis of astronomical aspects of the hydroplate theory, Creation Research Society Quarterly 49(3):197–210, 2013; http://www.creationresearch.org/crsq/articles/49/49_3/CRSQ%20Winter%202013%20Faulkner.pdf. Return to text.
    Brown, Ref. 2, p. 199. Return to text.
    Brown, Ref. 2, p. 200. Return to text.
    Oard, M.J., The origin of Grand Canyon Part V: Carved by late Flood channelized erosion, Creation Research Society Quarterly 47(4):271–282, 2011. Return to text.
    Fisher, R.D., The Best of Mexico’s Copper Canyon, Sunracer Publications, Tucson, AZ, 2001. Return to text.
    Oard, M.J., The origin of Grand Canyon Part III: a geomorphological problem, Creation Research Society Quarterly 47(1):45–57, 2010. Return to text.
    Oard, M.J., Flood by Design: Receding Water Shapes the Earth’s Surface, Master Books, Green Forest, AR, 2008. Return to text.
    Oard, M.J., Mt. Everest and the Flood; in: Oard, M.J. and Reed, J.K. (Eds.), Rock Solid Answers: The Biblical Truth behind 14 Geological Questions, Master Books, Green Forest, Ar., pp. 19–27, 2009. Return to text.
    Schmidt, K.-H., The significance of scarp retreat for Cenozoic landform evolution on the Colorado Plateau, U.S.A., Earth Surface Processes and Landforms 14:93–105, 1989. Return to text.
    Oard, M.J., The origin of Grand Canyon Part II: fatal problems with the dam-breach hypothesis, Creation Research Society Quarterly 46(4):290–307, 2010. Return to text.
    Rowley, P.D., Mehnert, H.H., Naeser, C.W., Snee, L.W., Cunningham, C.G., Stevens, T.A., Anderson, J.J., Sable, E.G., and Anderson, R.E., Isotopic ages and stratigraphy of Cenozoic rocks of the Maryvale Volcanic Field and adjacent areas, west-central Utah, U.S. Geological Survey Bulletin 2071, U.S. Government Printing Office, Washington, D.C., 1994. Return to text.
    Brown, Ref. 2, p. 191. Return to text.
    Austin, S.A., How was Grand Canyon eroded? In: Austin, S.A. (Ed.), Grand Canyon Monument to Catastrophism, Institute for Creation Research, Dallas, TX, pp. 83–110, 1994. Return to text.
    White, J.D.L. Depositional architecture of a maar-pitted playa: sedimentation in the Hopi Buttes volcanic field, northeastern Arizona, U.S.A., Sedimentary Geology 67:55–84, 1990. Return to text.
    Dallegge, T.A., Ort, M.H., McIntosh, W.C., and Perkins, M.E. Age and depositional basin morphology of the Bidahochi Formation and implications for the ancestral upper Colorado River; in:Young, R.A. and Spamer E.E. (Eds.), Colorado River Origin and Evolution: Proceedings of a Symposium Held at Grand Canyon National Park in June, 2000, Grand Canyon Association, Grand Canyon, AZ, pp. 47–51, 2001. Return to text.
    Brown, Ref. 2, pp. 201–202. Return to text.
    Oard, M.J., The Missoula Flood Controversy and the Genesis Flood, Creation Research Society Monograph No. 13, Chino Valley, AZ, 2004. Return to text.
    O’Conner, J.E., Hydrology, Hydraulics, and Geomorphology of the Bonneville Flood, Geological Society of America Special Paper 274, Geological Society of America, Boulder, CO, 1993. Return to text.
    Alt, D., Glacial Lake Missoula and Its Humongous Floods, Mountain Press Publishing, Missoula, MT, 2001. Return to text.
    Oard, M.J., The origin of Grand Canyon Part IV: the Great Denudation, Creation Research Society Quarterly 47(2):146–157, 2010. Return to text.
    Oard, M.J., New woolly mammoth dated 5,725 BP on St Paul Island, Alaska, J. Creation 24(2):6–7, 2010. Return to text.
    Sher, A.V., Late-Quaternary extinction of large mammals in northern Eurasia: A new look at the Siberian contribution; in: Huntley, B., Cramer, W., Morgan, A.V., Prentice, H.C., and Allen, J.R.M. (Eds), Past and Future Rapid Environmental Changes: The Spatial and Evolutionary Responses of Terrestrial Biota, Springer, New York, p. 323, 1997. Return to text.
    Fujita, K. and Cook, D.B., The Arctic continental margin of eastern Siberia; in: Grantz, A., Johnson, L., and Sweeney, J.F. (Eds.), The Geology of North America: Volume L-The Arctic Ocean Region, Geological Society of America, Boulder, CO, pp. 289–304, 1990. Return to text.
    Brown, Ref. 2, p. 246. Return to text.
    Brown, Ref. 2, p. 230–231. Return to text.
    Sutcliffe, A.J., On the Tracks of Ice Age Mammals, Harvard University Press, Cambridge, MA, p. 113, 1985. Return to text.
    Guthrie, R.D., Frozen Fauna of the Mammoth Steppe—The Story of Blue Babe, University of Chicago Press, Chicago, IL, 1990. Return to text.
    Guthrie, Ref. 53, pp. 1–44. Return to text.
    Ukraintseva, V.V., Vegetation cover and environment of the “Mammoth Epoch” in Siberia, Mammoth Site of Hot Springs Inc., Hot Springs, South Dakota, 1993. Return to text.
    Lepper, B.T., Frolking, T.A., Fisher, D.C., Goldstein, G., Sanger, J.E., Wymer, D.A., Ogden III, J.G., and Hooge, P.E., Intestinal contents of a Late Pleistocene mastodont from midcontinental North America, Quaternary Research 36:120–125, 1991. Return to text.
    van Hoven, W., Prins, R.A., and Lankhorst, A., Fermentation digestion in the African elephant, South African Journal of Wildlife Research 11(3):78–86, 1981. Return to text.
    Haynes, G., Mammoths, Mastodonts, and Elephants, Cambridge University Press, Cambridge, MA, 1991. Return to text.
    Oard, M.J., Frozen in Time: The Woolly Mammoths, the Ice Age, and the Biblical Key to Their Secrets, Master Books, Green Forest, AR, 2004. Return to text.
    Guthrie, Ref. 53, pp. 1–323. Return to text.
    Brown, Ref. 2, p. 12. Return to text.
    Khalke, R.D., The History of the Origin, Evolution, and Dispersal of the Late Pleistocene Mammuthus-Coelodonta faunal complex in Eurasia (Large Mammals), Mammoth Site of Hot Springs South Dakota, Inc., Hot Springs, SD, 1999. Return to text.


6,000 years of earth history. That's a long time in our opinion! Over 10,000 free web articles on creation.com. That's a lot of information! Take advantage of this free information but please support CMI as God provides. Thank you.

Article closed for commenting. Only available for 14 days from appearance on front page.
Readers’ comments
Dennis H., United States, 8 April 2013

Mr. Oard, I’d like to thank you for the enormous amount of time and effort you have contributed to this review of Dr. Brown’s work. However, I still like Dr. Brown’s model and for the most part, find it very plausible.

I believe God sees from the beginning to the end and knew of His’ judgements on the Earth long before he ever created it. He made a world that was ‘very good’ for His purposes, a world that He knew He would both judge with the global flood, and even dispose of, at the end of the age. It may have been a waste to create a ‘perfect’ world considering the judgements that would follow. Did the LORD build the ‘time-bomb’ into the initial creation? That is not implausible for me.

Dr. Brown’s description of the Earth’s crust cracking open and super jets of water and debris spewing high into the atmosphere seem to ring true to the Biblical description of the fountains of the great deep being opened. While I also pause at the idea of giant portions of the Earth being jettisoned into space by these plumbs, I still don’t fine it implausible.

This was a destructive event large enough to destroy all mankind and every breathing creature, except those on the ark of Noah. I think it’s fair to believe the entire land surface of the Earth would have had at lease some population by the time of the flood. So the magnitude of destruction had to have made an event like Krakatoa of 1883 look like a firecracker by comparison. Parts of the Earth ejected into space, Wow, that’s hard to imagine, yet that would explain a lot of what we see today.

So God bless you and Dr. Brown. I surely do not know who is right on every point but I give a mighty salute to both of you for your great work in defending the literal truth of the Scriptures.
Dennis H., United States, 8 April 2013

This is my favorite site on the web, God bless you all for your fine work !
Matthew G., Canada, 8 April 2013

I agree with this article, I always thought Hydroplate Theory sounded odd. Thoughts like this come up while reading HPT: "whats the purpose of supposing that?" "Why would we want to supposed that before the Flood?" I think Catastrophic Plate Tectonics is a much better model, I realize it *is* a model and has it's own problems but it makes so much sense, scientifically, and logically also biblically. I was actually thinking of that type of Flood model on my own thinking as a kid before I even read about any Flood models.
Joseph M., United States, 8 April 2013

The author complains that "Brown’s hydroplate model purports to explain an enormous number of observations and past events." Well, we can all agree that a global flood did occur, and such an event had an enormous effect on the whole world. When we eventually see the truth clearly, it indeed SHOULD explain everything. Also, the author addresses Brown's initial assumption of an underground water chamber: "This is a very special, arbitrary initial condition that has no evidence, as far as I know." That's because it is an assumption, as Brown clearly states in his book. By the way, this assumption agrees with scripture:

Ge 7:11 In the six hundredth year of Noah's life, in the second month, the seventeenth day of the month, the same day were all the fountains of the great deep broken up, and the windows of heaven were opened.

Ge 7:12 And the rain was upon the earth forty days and forty nights.

Things occurred in a particular order-the fountains broke open, the atmosphere could not contain all the water, and the water fell back to earth as rain. Finally, the author questions whether God designed the earth to eventually be flooded: "It also raises the question of whether God would have created a world that He called ‘very good’ which already had a ‘ticking time bomb’ which, in time, will explode." This argument can be used against every event that has occurred since the fall, and often is by atheists. What God created as very good has become corrupt by sin. Who knows, maybe mankind had a hand in breaking open the fountains of the great deep, in the same way man is always destroying what was once good?

I don't agree with Brown on every detail of his theory, but do think many aspects of it are quite plausible. Just my 2 cents worth!
Glen B., United States, 8 April 2013

Mostly this article is a critique of Brown's hypotheses concerning the formation of Grand Canyon, and the freezing of mammoths. Perhaps these aspects of Brown's work are "all wet", as it were. But the rest of the article hardly respesents a peer-review of Hydroplate Theory in general. Brown's book does present some engineering rigor, which the article does not. Is Hydroplate Theory complete in all details? Probably not. But it does answer the question, 'Where did all the water come from?' in a way that Ice Canopy Theory cannot.

Where I differ with Brown is his dismissive treatment of so-called 'Gap Theory' based on Custance's work "Without Form and Void". This dismissal may have been because of Custance's writings elsewhere about the Flood being regional, not global (he erred on this topic, in my view).

I believe the correct translation of Gen.1:2 is, 'And the earth BECAME waste and empty.' There have been 2 water judgments of the earth, both the result of angelic misadventures (cf. the progeny of the sons of God - the Nephilim ['gigas' in the LXX] - Gen.6:1-4; and note that Noah was pure in his pedigree - Gen.6:9).

The geologic models seem to have some hard-to-explain data for Flood scientists because they are limiting the data to only ONE flood. Unlike Brown, I lean toward 'Behemoth' and 'Leviathan' (ie, the saurians) having been destroyed by the first great flood of judgment in Gen.1:2.

But I do favor Brown's conclusions for a young earth and young cosmos. And he presents a lot of interesting scientific phenomena and critical review of them from the largely uniformitarian, scientific journals & books.
Morris G., United States, 8 April 2013

I agree with much of the critique of Dr. Brown's hydroplate theory. Regarding the changes in the tilt of the earth's axis and resulting climatic changes advanced by Brown however, as Dr. Brown points out, George F. Dodwell, the well respected Astronomer for South Australia from 1909 to 1952, after extensive study found that historical astronomical measurements made over a 4000 year period did indeed provide compelling evidence showing

that changes in the tilt of the earth's axis have taken place. I believe authors of creationist flood models need to either refute Dodwell's findings or incorporate earth axis tilt changes into flood models.
Carl Wieland responds

I agree, having had a copy of the original manuscript in my possession for some decades, that the Dodwell information is important and needs to be brought to light; we have spent considerable effort trying to encourage that for some years and I am pleased to say that this looks like happening very soon, though there's many a slip twixt cup and lip... However, what should be encouraging in the meantime, is knowing about his highly persuasive data about the reality of an axis shift over many centuries. Less encouraging/persuasive were some of his speculations in a separate part, which is not part of what is being proposed. For example, his speculation about it being partial recovery from an impact knocking over a once-upright Earth. Or his comments about the climate on an upright Earth, not so much the fact that it seems contrary to modern computerized modelling results, but his statement in one of his sections that there were no growth rings in fossil trees (the reality is that some do have them and some don't, like today). A creationist PhD physicist told me years ago that an impact big enough to do what Dodwell proposed would vaporize the Earth. So why do I see it as very exciting data? Because the methodical documentation of a substantially and historically changing tilt (up to AD 1850, IIRC) seems real, even irrefutable; and as the same physicist pointed out (and I later saw confirmed by a secular article, IIRC it was SciAm) a shift in the distribution of mass on the Earth's surface will result in a changing tilt. The secular source proposed that the shifting of the continents over vast ages would change the tilt. If CPT were the mechanism of the Flood, it would result in a changed tilt over much shorter timespans. Once the Dodwell data is published, it can presumably be seen if that fits with a CPT model or any other. Unfortunately, without the permission of the Dodwell estate, publication of any aspect prematurely is not feasible, but we are doing what we can to facilitate others publishing it with their consent. Stay tuned!

B. B., New Zealand, 8 April 2013

Has the author confused the normal use of the terms "deductive" and "inductive" in his final summation?

Shaun Doyle responds

The author intends to advocate an inductive approach to Flood modelling, i.e. generalizing from a large sample of particular observations, rather than a deductive approach, i.e. proposing a theory that acts as a constraint on our interpretation of the physical evidence. Dr Brown’s Hydroplate theory is an example of the latter approach which the author suggests we should avoid. Of course, there always is a constraint on our interpretation of the physical evidence within Flood modelling: the Bible. However, Flood modelling goes far beyond what the Bible tells us about the Flood to try to describe what happened in as much detail as possible. This means a deductive approach to Flood modelling doesn’t just impose the Bible as a constraint on the model; it also places other extrabiblical assumptions on the interpretation of the evidence. It is this that the author seeks to avoid precisely because we can’t implicitly trust any assumptions not derived directly from Scripture.

Mark B., Canada, 7 April 2013

From your conclusion:

"A better method is the inductive method of science in which one lets the observations speak for themselves and sees if the model can survive critical analysis. Contrary data should lead to the rejection or modification of the model."

Wow, did you really say this - that observations (or evidence) should speak for itself? What happened to the mantra 'evidence needs to be interpreted'?

Thank you for the observation that there is currently no viable flood model. As I'm convinced that the earth is old based on evidence I'm sure there will never be a viable flood model. In building your own model I'm sure you will consider all contrary observations/evidence.

Mark
Shaun Doyle responds

Note two important things about this article:

    It is an in-house debate: the reliability of the relevant biblical texts is not in question in this article.
    Finding evidence consistent with Noah’s Flood is not the same thing as finding evidence consistent with a particular Flood model. There is plenty of readily observable evidence that is far easier to explain in the context of a global watery cataclysm than in a deep-time context (e.g. Sedimentary blankets, It’s plain to see, ‘Millions of years’ are missing, Was the Flood global?). However, judging between different Flood models is much more difficult because the solid testimonial data has typically been exhausted for information, so we are left to deliberate between different Flood models on the physical evidence and the validity of the subsidiary assumptions different investigators make. (See Flood models and biblical realism)

In this light, the conclusion advocates an inductive approach to Flood modelling, and so is clearly advocating this within the biblical framework. The truth or relevance of Scripture is not questioned, but there is a lot that the Bible doesn’t say that would be relevant to Flood modelling. As such, Flood modellers investigate the physical evidence assuming that Scripture provides the reliable starting point for all Flood models.

Our statement in the preface is also made within this same context. The Bible is infallible, but Flood models are not. The Bible is clear enough that there was a global watery tectonic cataclysm about 4,500 years ago, and that is the non-negotiable starting point of all Flood modelling. However, given the subjective nature of the physical evidence, the fact that Flood modelling is a relatively young enterprise, and the fact that most research done on the relevant evidence has been done in an antithetical framework which requires painstaking reanalysis and reinterpretation, Flood modellers clearly have a huge task ahead of them.

Jonathan G., United States, 7 April 2013

Mike, you've done a fantastic job on this article. I am sure you put far more work into it than most of realize, and I appreciate your careful and thoughtful and well-referenced approach.

I had forgotten the gist of Brown's model. Now that I read your critique here, I remember why I had forgotten it. (Sorry. I know that sounds harsh of me. It's true though). While I like the idea of a layer of water under the continents, much of what Brown puts forth stretches credulity -- the launching of rocks into space, God's designing a not-so-very-good planet that would explode, etc.

I just want you to know how much I appreciate your painstaking approach, and the attention to detail.
Jonathan G., United States, 7 April 2013

The above looks to be an interesting article, and I plan to to read it today. Thank you for putting in the effort to research it and to write it.

Question: What precisely do you mean when you say: "submit his model ... to the Journal in order to have it pass through the refining fire of robust criticism in the normal scientific fashion"? He has published a book, right? So there is the model, right there in the book, and everyone is free to critique it, as in fact you are doing now in the present article. When you say "submit", are you expecting him to change his text in response to your feedback?
Carl Wieland responds

Jonathan, I think that included in what was meant was this: publication in a formal journal would have meant a protocol which would not only have allowed critique, it would have meant that the author of the paper proposing the model (or aspects of it) would have had a formal right of reply to his critics, with the normal rules of scientific exchange and openness, so people could see pro and con arguments together. Our suggestion is that any new concept in creationist thought and research is, ideally, best exposed first to formal criticism in a technical setting, to see how it survives, as it were, prior to being published in a form for a lay audience. However, I readily acknowledge that this ideal has not always been followed, including by us, and as such it would not have been worthy of such detailed comment. The reason for finally publishing this is because we keep on getting hassled about why we don't stock the book, and so to explain we have to start giving critical comments 'behind a person's back', as it were, which is not the intent.
Jeannette P., United Kingdom, 7 April 2013

Good science involves the willingness to change, or even discard, a hypothesis if it appears untenable.

I had never heard of Dr Walter Brown or the ‘Hydroplate’ Flood model, (and as a non Geologist, find this article too technical to understand fully); but it does seem strange if he is unwilling to submit his thesis to peer review of other Creationist scientists. Of course, it cannot be easy if one has spent years perhaps developing a thesis, to submit to having it criticised. However, being willing, if necessary, to discard a pet idea (as long as it involves no challenge to our basics of faith) should be easier for a Christian than anyone else. Having a problem with this means it has become an “idol” and NEEDS to be let go for that reason alone. After all, it is not the same as having one’s worldview under attack, as would happen if the thesis was submitted to Evolutionist scientists!

Creationists base their studies on the presupposition that the Genesis account is historically reliable. That the Flood happened should be a non-negotiable tenet of faith. However, research and discussion on HOW it happened is permissible because it has no effect on our basic beliefs.

Evolutionists base their studies on the presupposition that evolution happened. That is to them a non-negotiable "tenet of faith". But again, research and discussion on HOW it happened is permissible in Evolutionist circles because it has no effect on basic beliefs
« Last Edit: February 28, 2017, 03:22:20 pm by Admin »

Share on Facebook Share on Twitter


Admin

  • Administrator
  • Hero Member
  • *****
  • Posts: 555
    • View Profile
Re: MO/GRAND CANYON
« Reply #1 on: September 14, 2021, 10:51:22 am »
On the Disproportion between Geological Time and Historical Time. Part Two - of Earth, Fire and Water [Journals] [SIS Review]
... place they graded laterally into each other and elsewhere intertongued vertically. The stratigraphy contradicts the idea that one rock is 200 million years older than the other. (NB. Vertical scale is 4 times horizontal scale.) Figure 4 depicts the rock strata found on the North Kaibab Trail where a sign announces the transition. Waisgerber, Howe and Williams, who examined the area, searched the strata above and below the contact-line for erosional features, but found none. All the beds were horizontal, and the interface between the two types of limestone was smooth, without pronounced incisions, broken rock or gravel. On the contrary, it was clear that Cambrian and Carboniferous rock had been laid down successively. When individual beds were traced along the rockface north or south, Muav limestone was seen to grade into Redwall limestone and vice versa without interruption of bedding planes. Similarly, in the vertical direction, Redwall limestone beds were succeeded by Muav beds, which in turn gave way to Redwall, apparently going as easily back in time as they went forward. Slivers of micaceous shale and patches of mottled limestone both below and above the contact-line also indicated simultaneous deposition [11]. The sedimentary rocks which comprise the Colorado Plateau cover an area of some 250,000 square miles, extending across most of Utah and Arizona and much of Colorado and New Mexico. According to the uniformitarian view, they accumulated over a period of 570 million years, from the Cambrian to the present day, during which time there were numerous changes of environment, subsidences and uplifts. Yet from the bottom to the top the strata rise horizontally, without warping or indentations, as if they were all precipitated over a brief period by a series of massive cataclysms. Such vast layers of sedimentary rock do not resemble the gradual deposits of an ancient sea. The mineral composition of the rocks is too homogeneous, unlike the detritus at the bottom of the seas today. One naturally asks, where did the huge quantities of limestone (or whatever other rock) originally come from, if they accumulated by ordinary processes of erosion and sedimentation. What was eroded, if not the seabed itself - and where? The ordinary processes of marine erosion observed today produce nothing comparable, because the seabed is not only the product but the object of erosion, and sediments are merely recycled. As Ager puts it: "There are plenty of areas of sea-floor with Recent sedimentary cover of sorts, but - at least on the inner shelves - this nearly always seems to be moving to and fro and not building up. ... In fact, ... I have always been struck by the paucity of oceanic sediments in the continental areas. We can get rid of much of it by subduction, but certain orogenic episodes (notably the Variscan) seem to have very little to show of the ocean floor." [12] The strata show no evidence of long-period erosion. Moreover, the only erosive agents observed today are occasional rivers, such as the Colorado itself, which did not begin to gouge its way through the Plateau until the Pliocene period, but then in the geologically brief period from the Pliocene to the present day cut right down to pre-Cambrian layers a mile beneath the surface. As the Mount St Helens eruption showed, a mud flow can erode a canyon 100 feet deep in days; a laminated deposit of volcanic ash 25 feet deep can be laid down in hours [13]. Another anomaly in the way of those who would impose a Darwinist interpretation on the Grand Canyon is the discovery of fossil pollen grains in Precambrian strata. This was reported in 1966 by Burdick, and confirmed in 1988 by Howe, Williams, Matzko and Lammerts. Both gymnosperm and angiosperm pollen were found (pollen from conifers and